Dual is a interpretation about the infinite set of rational numbers between zero and one.
Two objects create a physical in-between, embodying this infinity.
Concept
The set of natural numbers is infinite. The set of rational numbers, for example between zero and one, is also infinite. According to Georg Cantor, these two sets have the same cardinality, meaning they contain the same infinite amount of elements.¹
Exhibition view: Hybrid Box by Pylon Lab, Dresden Hellerau © Thomas Schmelzer
Exhibition view: Silent × Dual, Städtische Galerie Dresden © Niklas Thran
Visuality
Two cylinders levitate at equal height in space. In static arrangement, both objects visually relate to each other and refer to what lies in between them.
Acrylic on wood
80 × 6 × 6 cm each
Exhibited at:
Soft
Projektraum D01 Tapetenwerk, Leipzig
12.09.–14.09.2025
Silent × Dual with Valeriya Krasnova, surrounded with music by Jacob Korn
Projektraum Neue Galerie, Städtische Galerie Dresden
09.02.–14.04.2024
HYBRID Box – Modular Gallery for Digital Arts, surrounded with music by Jacob Korn
Dresden Hellerau
06.07.–04.09.2023
Photos: Niklas Thran
Special Thanks to:
David Krebs, Jana Lütkewitte, Georgianna Manafa, Manuel Minniti, Luisa Roth, Thomas Schmelzer / Pylon, Ralf T., Niklas Thran
[1] cf. Deiser, Oliver (2021): Einführung in die Mengenlehre: Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo, 4. Auflage (2021), S. 137. Online unter: aleph1.info [aufgerufen am 13.10.2023]
80 × 6 × 6 cm each
Exhibited at:
Soft
Projektraum D01 Tapetenwerk, Leipzig
12.09.–14.09.2025
Silent × Dual with Valeriya Krasnova, surrounded with music by Jacob Korn
Projektraum Neue Galerie, Städtische Galerie Dresden
09.02.–14.04.2024
HYBRID Box – Modular Gallery for Digital Arts, surrounded with music by Jacob Korn
Dresden Hellerau
06.07.–04.09.2023
Photos: Niklas Thran
Special Thanks to:
David Krebs, Jana Lütkewitte, Georgianna Manafa, Manuel Minniti, Luisa Roth, Thomas Schmelzer / Pylon, Ralf T., Niklas Thran
[1] cf. Deiser, Oliver (2021): Einführung in die Mengenlehre: Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo, 4. Auflage (2021), S. 137. Online unter: aleph1.info [aufgerufen am 13.10.2023]